

PAPER ID-421311

Roll No:

MCA

(SEM II) THEORY EXAMINATION 2021-22 OPERATING SYSTEMS

Time: 3 Hours

1.

Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A Attempt *all* questions in brief.

2x10 = 20

Qno	Questions	CO
(a)	Describe all operating system services.	1
(b)	Defend timesharing differ from multiprogramming? If so, how?	1
(c)	Discuss the uses of mutex?	2
(d)	Describe race condition for cooperating processes.	2
(e)	Compare and contrast Single-threaded and multi-threaded process.	3
(f)	Distinguish between CPU bounded, I/O bounded processes.	3
(g)	What are the conditions under which a deadlock situation may arise?	4
(h)	What is resource-allocation graph?	4
(i)	Define Belady's Anomaly.	5
(j)	Explain logical address space and physical address	5space
	diagrammatically.	

SECTION B

2. Attempt any *three* of the following:

10x3 = 30

Qno	Questions	CO
(a)	Describe operating system functions. Also, explain monolithic, and	1
	microkernel systems.	
(b)	Define critical section problem. Write the Peterson's solution to solve	2
	critical section problem.	
(c)	Illustrate process states and process transition diagram.	3
(d)	Discuss the following storage placement strategies with suitable	4
	examples.	
	(i) Best fit	
	(ii) First fit	
	(iii)Worst fit	
(e)	What are the three methods for allocating disk space? Explain.	5
	SECTION C	

SECTION C

3. Attempt any *one* part of the following:

10x1 = 10

Qno	Questions	СО
(a)	Explain the following terms and their working with diagram	1
	i) Buffering ii) Spooling iii) Time sharing iv) Distributed system	
(b)	Differentiate between multiprocessor, multiuser, and Batch operating	1
	system.	

4. Attempt any *one* part of the following:

10x1 = 10

Qno	Questions	CO]
(a)	Interpret Dining philosopher problem.	2	1
(b)	r	2 by	fou
	concurrent processes W, X, Y, Z as follows. Each of the processes W		

Download all NOTES and PAPERS at StudentSuvidha.com

Roll No:

MCA (SEM II) THEORY EXAMINATION 2021-22 OPERATING SYSTEMS

and X reads x from memory, increments by one, stores it to memory, and then terminates. Each of the processes Y and Z reads x from memory, decrements by two, stores it to memory, and then terminates. Each process before reading x invokes the P operation (i.e., wait) on a counting semaphore S and invokes the V operation (i.e., signal) on the semaphore S after storing x to memory. Semaphore S is initialized to two. What is the maximum possible value of x after all process's complete execution?

5. Attempt any *one* part of the following:

10x1 = 10

Qno			Questio	ns		CO
(a)	Illustrate p	rocess states ar	nd process tra	insition diagrar	n.	3
(b)	Consider the set of 4 processes whose arrival time and burst time are given below-					3
	Process	Arrival	Burst Ti	me C	<i>,</i>	
	No.	Time	CPU Burst	I/O Burst	CPU Burst	
	P1	0	3	2	2	
	P2	ed min +	2	4	1	
	P3 100	2	1	3	2	
	P4	5	2	2	1	
	If the CPU s calculate the	cheduling poli e average waiti	cy is Shortes ng time and a	t Remaining Ti average turnaro	me First, und time.	

6. Attempt any *one* part of the following:

10x1 = 10

Qno	Questions	CO
(a)	Considering a system with five processetsroulgh land three	4
	resources of type A, B, C. Resource type A has 10 instances, B has 5	
	instances and type C has 7 instances. Suppose at following	
	snapshot of the system has been taken.	

Download all NOTES and PAPERS at StudentSuvidha.com

PAPER ID-421311

MCA (SEM II) THEORY EXAMINATION 2021-22 OPERATING SYSTEMS

	<u> </u>						
	Process	Allocation	Max	Availa	ble		
		АВС	АВС	AB	С		
	Po	010	753	33	2		
	P1	200	322]			
	P ₂	302	902]			
	P ₃	2 1 1	222				
	P4	002	433				
(b)	P4 Then, I. What II. Is the sequer III. What of reso resources: E concurrently. resource requires P2 would require the various pro- Allocation. Co shown below, only resources	vill be the content e system in a saffice? will happen if pro- ource type A and tw , F and G. I At the outset, the p irements using a n c [P2, F] is the ma ure. The number of rocesses at any gi onsider a state of the and in which 3 instants s available.	t of the Need matrix e state? If Yes, t ccess Prequests on vo instances of rese Four processes processes have dec natrix named Max aximum number of f instances of the r ven state is given he system with the stances of E and 3 is P_0 P_1 P_2 P_3	ix? hen what is e additionation ource type P0, P1, lared their rasis given b f instances al by a matrice Allocation instances of Max E $F4 32 11 35 4$	is the s I instand 2 P2 and maximu elow. F of F th located rix name matrix f F are the G 1 4 3 1	afe ce f 4 P3 execu m or at to ed as he	ıte
	Find the safe s	sequence.					

7. Attempt any *one* part of the following:

10x1 = 10

Qno	Questions	CO
(a)	A system uses 3-page frames for storing process pages memory. Assume that all the page frames are initially empty. What is the total number of page faults that will occur while processing the page reference string given below for FIFO, LRU and Optimal Page Replacement algorithm? Also calculate the hit ratio and miss ratio. 4, 7, 6, 1, 7, 6, 1, 2, 7, 2	in ma
(b)	Explain the three methods available for allocating disk space?	5

Download all NOTES and PAPERS at StudentSuvidha.com